Fractional Dynamics Based-Enhancing Control Scheme of a Delayed Predator-Prey Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population

A mathematical model describing the dynamics  of a  delayed  stage structure prey - predator  system  with  prey  refuge  is  considered.  The  existence,  uniqueness  and bounded- ness  of  the  solution  are  discussed.    All  the  feasibl e  equilibrium  points  are determined.  The   stability  analysis  of  them  are  investigated.  By  employ ing  the time delay as the bifurcation parame...

متن کامل

Stability Analysis in a Fractional Order Delayed Predator-Prey Model

In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given...

متن کامل

Rich dynamics in a delayed Gause-type predator-prey model

where x(t) denotes the density of the prey population and y(t) the density of predators. Parameters r, K, s, Y , and m are positive constants denoting the intrinsic growth rate and the carrying capacity of the prey, the death rate of the predator in the absence of prey, the yield constant, and the maximal growth rate of the predator, respectively. The function f(x) denotes the response function...

متن کامل

Delayed Predator-prey Model : a Control Theoritic Analysis

This paper investigates the time delayed nonautonomous predator-prey models. The cause of the time delay considered here is due to gestation on the consumption of an infected prey by the predator. The local stability conditions are obtained by linearizing the models around the equilibrium points. Also the occurrence of Hopf bifurcation is proven analytically, corroborated with the computational...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: 2169-3536

DOI: 10.1109/access.2021.3073992